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Local and Global Behavior near Homoclinic Orbits 
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We study the local behavior of systems near homoclinic orbits to stationary 
points of saddle-focus type. We explicitly describe how a periodic orbit ap- 
proaches homoclinicity and, with the help of numerical examples, discuss how 
these results relate to global patterns of bifurcations. 
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1. I N T R O D U C T I O N  

Some ordinary differential equations are known to have homoclinic orbits 
to stationary points of a saddle-focus type. These orbits tend towards the 
stationary point in both forwards and backwards time, approaching the 
point directly in one time direction (along a vector associated with a real 
eigenvalue of the flow linearized near the stationary point) and spiraling 
into the point in the other time direction (on a plane associated with a 
complex conjugate pair of eigenvalues of the linearized flow). 

There is a confusion in the literature between the local and global 
effects of such a homoclinic orbit in a system of equations. Sil'nikov (1'2) 
proved some theorems about  the existence of periodic and aperiodic 
trajectories in a neighborhood of these homoclinic orbits, some of which 
have been improved or added to in recent years. At the same time, other 
writers have at tempted to relate these local results to numerically observed 
chaotic behaviors in systems of equations in which the appropriate types of 
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homoclinic orbit occur. There is, undoubtedly, some relationship between 
these two phenomena, but we believe that it has often been stated over- 
simply. In this paper we explore the relationship between the local (theoreti- 
cal) results and the global (observed) behaviors in more detail; our argu- 
ments will be a combination of theoretical, numerical, and intuitive ideas, 
and throughout the paper we have emphasized understanding over rigor. 

We start, in Section 2, by repeating a by now standard analysis of the 
local behavior near to a homoclinic orbit. This gives us a two-dimensional 
return map on a section of a plane close to the relevant stationary point, 
and it is this map which we analyze in Section 3. Our main aim is not to 
reprove Sil'nikov's theorems; instead we concentrate on the fixed points of 
the map and obtain explicit results about how a periodic orbit approaches 
homoclinicity as a parameter is varied around the value at which we have 
homoclinicity. In some situations this approach is through an infinite 
number of tangent (saddle-node) bifurcations. We can calculate quantities 
which relate the period of the orbit and parameter values as the orbit 
approaches homoclinicity to the eigenvalues at the stationary point. We 
also show that there may be an infinite sequence of homoclinic orbits close 
to the one which we are considering. Throughout Section 3 we emphasize 
those results which will be useful when trying to piece together global 
bifurcation pictures for systems which have the appropriate type of homo- 
clinic orbit. In particular, we argue that it may sometimes be legitimate and 
useful to think (in global terms) of the many bifurcations that may occur 
close to homoclinicity as producing, collectively, a single periodic orbit. 

In Section 4 we study three different systems of ordinary differential 
equations. In Section 4.1 we examine the Lorenz equations; these illustrate 
the theoretical results in a very convincing fashion (and in the presence of a 
symmetry). In Section 4.2 we study a very different system, and our 
emphasis here is on producing a fairly complete bifurcation picture for a 
wide range of parameters. This  involves, amongst other things, drawing a 
distinction between those aspects of the observed behavior which can be 
properly predicted from the local analysis near each homoclinic orbit, and 
those aspects of the behavior which should more properly be inferred from 
global properties of the flow deriving from an interaction between two 
stationary points. This distinction is emphasized by Section 4.3, where we 
study a system similar to that of Section 4.2 but which is piecewise linear; 
for the system of Section 4.3 we show how the development of numerically 
observed chaotic behavior can be comprehended with only the crudest 
understanding of homoclinic orbits. 

Finally, in Section 5, we indicate the likely implications of our work 
for other systems of equations containing homoclinic orbits of the appropri- 
ate kind, and mention some of these. 
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2. A TWO-DIMENSIONAL RETURN MAP 
ON A SURFACE NEAR THE STATIONARY POINT 

We consider one-parameter  families of autonomous ordinary differen- 
tial equations which can be written in the form 

= -XzX - ~oy + P ( x , y , z ;  I~) 

= ~ x  - ~2Y + Q ( x , y , z ;  t~) 

2 = ~ l z  + R ( x , y , z ;  l~) 

with ~1, ~2 > 0 and P, Q, R analytic functions of x, y, z and/~ which vanish 
with their first derivatives when x = y = z -- 0. The origin (x = y = z = 0) 
is thus a stationary point of saddle type with linearized eigenvalues ~l, 
-~2 --- i~. Suppose that when / t  = 0 the unstable manifold of the origin is 
included in the stable manifold of the origin, so there is a homoclinic orbit 
(an orbit which tends to the origin as t ~ ___ ~ ) .  Without loss of generality 
we can choose our parameter/~ so that the flow looks like that illustrated in 
Fig. 2.1 for parameter  values pt < 0,/ t  = 0, and/~ > 0. We wish to calculate 
a two-dimensional return map (Poincar6 map) on some suitable surface 
close to the stationary point for t~ values near zero. Our derivation follows 
Arneodo e ta / .  (3) almost exactly, though we consider a slightly more general 
case. See also Refs. 4-7. 

The map is obtained by dividing the flow close to the stationary point 
and its unstable manifold into two parts: a small neighborhood of the 
stationary point where the flow is essentially linear, and a global flow which 
takes trajectories close to the unstable manifold away from and then back 
into the linear region. The reader interested in a detailed justification of this 
procedure should consult Refs. 7, 3, 8, or 9. 

(4) (b) 

# ~ 0 / #---0 

Co) 

Fig. 2.1. Behavior  of the uns tab le  mani fo ld  of the origin. (a) t~ < O; (b)/~ = 0; (c) # > 0. 
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Fig. 2.2. The surfaces used to calculate the return map, illustrated at ~t = 0. S O is parallel to 
the stable manifold and a distance h above it. S I is perpendicular to this manifold. The 
unstable manifold strikes Si a distance ? from the stationary point; we consider only a strip of 
Sl such that each trajectory only strikes S I once as it spirals into the stationary point 

Jr! = r2exp(-- 2~r)~z/~O)]. 

The situation is illustrated in Fig. 2.2. Inside the linear region contain- 
ing the stationary point we choose two surfaces: S o is parallel to the stable 
manifold of the stationary point and a distance h above it; S 1 is perpendic- 
ular to the stable manifold, intersecting it on a radial line out from the 
stationary point. We shall derive the return map Z~ : S~ ~ S 1 by using the 
linearization assumption to obtain a map E i : S 1 ~ So and then find a map 
Z~ So ~ Sl which specifies how trajectories which leave So into the nonlin- 
ear region return to the linear region at S~. 

We use cylindrical polar coordinates (r, 0, z) with the stationary point 
at the origin and the stable manifold of the origin (in the linear region) on 
the plane (r, 0, 0). In these coordinates So is a part of the plane (r, 0, h) and 
S 1 a part of the plane (r, 0, z). In the linear region the differential equations 
are given by 

f = - )~2r 

0=,0 (1) 
2 = ?~lz 
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which have solutions 

r ( t ) - roe -X2 '  

oft) = o0 ? (2) 
z ( t )  = ZoeX:': 

Thus, a trajectory started at(ro,O, zo) on .or strikes S O a t  time <T where 
h = Zo ex'T providing z o > 0. If Zo.< 0; .the trajectory wanderS away from.the 
region we are considering and is of  no further:interest in this. ,local analysis 
(see Fig. 2. I). This gives us, for z o > 0, a map Z ) : S I --) S o given by . . . .  

r o , In - , h ~l(ro'O'zo)--> ~ t h',)" '~:,/~l', ;/-z ) ) (3) 
o So,_~Si. We have assumed that 'when We now consider the map Y~,: 

ff = 0 there is a homoclinic orbit. Thus we have ~;o~ (~0,0) and: 
from our choice of parameter in Fig. 2.1. we have 57~ h) = (r, 0, z), with 
z having the same sign as/~; these equations give u s  the behavior of the 
unstable manifold of the origin. If the region we are considering is small 
enough we may assume that the remainder of. 5~ ;is given by first-order 
linear terms in a Taylor expansion. This gives us Z~ : So--> S l given :by 

E~ = (~" +at~ + brcosO~+ crsin0,0, 

dl~ + er cos 0 + f r  sin 0,) (4) 
with a, b, c, d, e, and f constants depending on the ~!0bai f low (such that 
the map is nonsingular) with d > 0. 

Equation (4) can be rewritten 

Z~ O, h) = (~ + al~ + prcos(O + , , ) ,  O, dff + qr cos(0 + *2)) (5) 

Combining Eqs. (3) and (5) we obtain a map Y~,: Sj-~ S) (dropping the 
middle coordinate, which is zero) given by 

( ] Y , ( r , z ) =  ? + a l t + p r  -~ X-~I In z +*1 , 

dl~ + qr ~ ~11 In -z + '2  ,(6) 

We may simplify this equation by writing constants 

8 = X2/Xl, a =ph -~, B = q h-* 

~= X1 ~,l lnh + . 2  



650 Glendinning and Sparrow 

and by rescaling the parameter/~ so that d = 1. We then have 

E~(r,z) = (~ +art + arz%os(~lnz + 0,) ,  

I~ + flrz %os(~ In z + (I)2)) (7) 

Recall that Eq. (7) is defined only for z > 0 and for r in a certain range 
chosen so that trajectories only pierce S l once as they spiral towards the 
origin (see caption to Fig. 2.2), and that 8, the constant which determines 
the relative sizes of the eigenvalues at the stationary point (8 = X2/X1), is 
positive. 

Notes on the Validity of Equation (7) 

(1) We should only use results obtained from the return map (7) 
when we can be reasonably certain that the properties of this map accu- 
rately reflect the topological and stability properties of the actual flow 
under consideration. As explained above, the procedure we used to derive 
(7) can be formally justified, but only in some unspecified neighborhood of 
the homoclinic orbit. Consequently, we should only rely on (7) when r, z, 
and t~ are all small. 

(2) We have assumed that the eigenvalues )~1, -)~2 + iw, are constant 
with changing/~. This is actually an unnecessarily restrictive assumption, 
made to simplify the formulas. We are free to use (7) even if this assump- 
tion does not hold, unless 8 (=)~2/)~1) is at a critical value (we shall see in 
Section 3 that 6 = 1 is critical). 

(3) We have assumed that we are not interested in trajectories that 
start on S~ with z < 0. These trajectories will move away from the station- 

Fig. 2.3. Two types of symmetric situation in which the return map (7) will be useful. 
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ary point near to the branch of the unstable manifold which we have not 
considered. In many systems this is sensible as, for example, this branch of 
the manifold often tends to infinity without coming close to the stationary 
point again. It is clear, however, that in certain circumstances, for instance 
if there is a symmetry like that shown in Fig. 2.3a, our derivation will apply 
for z < 0 as well as for z > 0 (with the obvious changes in sign). We do not 
consider the case shown in Fig. 2.3a any further. Note, though, that Eq. (7) 
will be almost directly applicable to the type of symmetric situation shown 
in Fig. 2.3b. We consider this case again when we look at the Lorenz 
equations in Section 4. 

3. ANALYSIS OF THE MAP 

We analyze Eq. (7) of Section 2 in its full two-dimensional form. We 
concentrate mainly on the simplest fixed points of (7), partly because a 
more general analysis is complicated, but mainly because this study will 
give results likely to be of direct interest when we perform numerical 
experiments on examples. In fact, as we shall see, our analysis gives a 
surprising wealth of information. Some of the results below are immediate 
corollaries of Sil'nikov's theorems. We shall state these theorems in due 
c o u r s e .  

3.1. Fixed Points of the Map 

3.1.1. Number of Fixed Points (z,/~ << 1). If we put the left and 
right sides of Eq. (7) equal we obtain, for the r coordinate, 

r = (? + alL)~ [ 1 - e~z  %os(~ In z + qb,)] (8) 

Substituting (8) into the equation for the z coordinate we get 

(z - /~) [1  - az%os(~lnz + ~ , ) ]  = (~ + a # ) f l z % o s ( ~ l n z  + ~2) (9) 

Calculating the position and number of intersections of the two curves 
representing the left and right sides of (9) is, in general, complicated, but if 
we restrict our attention to the region z << 1 so that the left side of (9) 
becomes approximately z - / ~ ,  our task is considerably simplified. Each 
diagram in Fig. 3.1 shows, for a particular choice of parameters 6 and #, 
two curves representing the left and right sides of Eq. (9), respectively. The 
points of intersection of the two curves give the z values of fixed points of 
(7). (Notice particularly that these diagrams are not one-dimensional maps.) 



r ~ 1  h< o 

F - < O  

t v )  ~c .  

1 I 
�9 /'-"- ~ rO 

) 

Fig. 3.1. The curves z - F and flz acos(~ In z + q~2) for various values of  tt and 8. Intersections 
of  the curves give the z coordinate  of  fixed points  of  the return map  (7). ( i )-( i i i )  6 > 1; 
(iv)-(vi) 6 < 1. 
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For 8 > 1 [diagrams (i)-(iii) of Fig. 3.1] we have the following: 
(i) and (ii)/t < 0. There are no fixed points of (7) in z << 1 except for 

the one at z =/~ -- 0. This fixed point lies on the homoclinic orbit which 
exists at ~ = 0. 

(iii)/~ > 0. In z << 1 there is one fixed point of (7) for each /t. [The 
slope of the wiggly curve in Fig. 3.1(iii) has order z 8- ] which is small since 
8 > 1. This implies the existence of only one intersection of the two curves.] 
This fixed point will lie on a periodic orbit of the original differential 
equations which passes once through the region of the linear analysis near 
the stationary point before closing up. 

When 8 < 1 [diagrams (iv)-(vi) of Fig. 3.1] we have the following: 
(iv) and (vi)/~ < 0 a n d / t  > 0. There is a finite number of intersec- 

tions of the two curves, each representing a fixed point of (7) lying on some 
periodic orbit of the original differential equations which passes once 
through the region of the linear analysis near the stationary point. 

(v) # = 0. There is a countable infinity of intersections representing a 
countable infinity of periodic orbits in the original equations. 

3.1.2. Bifurcation Diagrams. Period of the Orbits. We may sum- 
marize the information from 3.1.1 in the two diagrams of Fig. 3.2. Each 
diagram plots the period of the orbit represented by the fixed points found 

~r p e r i o d  
J 

1 
0 

<0 # <0  # >0 # >o  

/ii) 

Fig. 3.2. The period of the orbit on which the fixed points of the return map (7) lie. Period is 
plotted against parameter,/~. (i) 8 > 1 ; (ii) 8 < 1. 
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above against the parameter ~t at which they occur. Figure 3.2(i) shows the 
situation for 8 > 1 and Fig. 3.2(ii) shows the situation for 8 < 1. 

In constructing Fig. 3.2 we have used the fact that the periodic orbits 
represented by fixed points of (7) with smaller z coordinate twist around 
the unstable manifold of the stationary point more often [see the derivation 
of (7) in Section 2]; hence, on the assumption that the time of return to the 
region of the linear analysis (the time taken to get from S o to S 1 in Section 
2) is approximately constant, these orbits have longer period. Figure 3.2(i) 
is fairly straightforward; as/x decreases to zero (8 > 1), the fixed point has 
z coordinate decreasing to zero, and the period of the orbit through the 
fixed point increases to infinity. We may say, if we like, that the homoclinic 
orbit occurring at/~ = 0 is a periodic orbit of period infinity. Figure 3.2(ii) is 
more complicated, but if we consider any fixed/~ (a vertical line on Fig. 
3.2) we find the number of orbits existing at that/~ value agrees with the 
results of Section 3.1.1 above; if / ~ 0  a vertical line on Fig. 3.2(ii) 
intersects the curve in a finite number of points, and if t~ = 0 we see an 
infinite number of intersections. 

Figure 3.2(ii) illustrates that there is a sense in which we can say that 
all of the fixed points of (7) (8 < 1) represent the same periodic orbit; by 
following the orbit with increasing and decreasing/x we can get continu- 
ously from any point of the curve in Figure 3.2(ii) to any other. We may 
say, in fact, that all the fixed points of (7), for both 8 > 1 and 8 < 1, lie on 
one periodic orbit, which we shall call the principal periodic orbit, whose 
period tends to infinity as/~ tends to zero. Intuitively speaking, the orbit 
tends to infinite period by "winding itself up around the unstable manifold 
of the stationary point" as/~ approaches zero. With this interpretation of 
the results, the difference between the two cases then lies in the way in 
which we must make /~ tend to zero in order to follow the orbit to 
homoclinicity. When we come to look at examples, the importance of this 
difference will depend on the size of the wiggles in Fig. 3.2(ii) compared 
with the size of the parameter range in which we are interested; in other 
words, we may not be very interested in the difference if we are considering 
a global and not a local picture (of. Section 3.3.2). 

We can get some idea of the rate at which the wiggles decrease in size, 
as well as other asymptotic properties of the curves shown in Fig. 3.2 from 
the information contained in Fig. 3.1. First notice that if we have two fixed 
points of (7) (at the same or different ~t values) such that the z coordinates 
of these points are z i and z;+ 1 with [~ lnz i -  ~lnZi+l[ = y~r, the periodic 
orbits on which these points lie will have periods Pi and Pi+J with [p~ - Pi +11 

7r162 this follows because ~lnz is the quantity which controls the 
number of rotations about the unstable manifold of the stationary point 
within the region of linear analysis, and o0 is the rate of rotation. With 8 > 1 
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we see that the fixed point satisfies, asymptotically, z ~/~, and hence can 
deduce at once that as/~ tends to zero from above, the period of the single 
orbit which exists in ~ > 1 tends to infinity like I~(ln/~)/~1. Remembering 
that ~ = - ~ / ~ 1 ,  we have, for Fig. 3.2(i) 

per iod~ - (In/~)/~, (10) 

For 3 < 1 we consider the period of the orbit at the various intersec- 
tions of the bifurcation curve with/~ = O. If we write these as Pz, Pz+J,  Pi+2,  

etc., we have 

lira (Pz+l-Pz)  = ~r/~o (11) 

since fixed points occur, when/z = 0, at points with z coordinates z i ,  z i+ j , 

etc., where the ~lnzz differ, asymptotically, by ~r. Furthermore, we may 
calculate the asymptotic ratio of the/z va lues , / t z , / z i+ l , . . . ,  at which the 
curve of Fig. 3.2(ii) is vertical; we choose/z i to be one such value and follow 
the curve up to the next such value to get #z+l, etc. [Thus, if/~z > 0 then 
~Z+l < 0 ,  ~Z+2 > 0 ,  etc.] The ~i will be parameter values at which the 
left-hand side of Eq. (9) is tangential to the right-hand side of (9) at points 
z i. For small enough z these tangencies occur nearly at the maxima and 
minima of the curve on the right side of (9) and the left side of (9) is 
approximately z - /~ .  Maxima and minima of the right side of (9) occur at z 
values zi, z z+ l with [4 In z i - -  ~ In z z+ 11 ~ ~r and so we get, using z - iz = +_ cz  ~ 

(some constant c) at fixed points occurring at such z values. 

~ z + ' - z z + ' + z z ~ + l c  [ zz+l ]~ [%-~1 
Izz z z -  z~c  ~ -  --zz ,~  - e x p  

Remembering that 6 = ~2/~1, and ~ = w/~ 1 we have 

lira (/~i+ 1//~;) = - exp( - ~ r ~ z / W  ) (12) 
i---~ c<z 

If the quantity ~r~z/W in this relation is large, we can expect the wiggles in 
Fig. 3.2(ii) to decrease in size very rapidly as period increases; in this case 
the difference between the 6 < 1 and the 6 > 1 approaches to homoclinicity 
may not be easily observed numerically and may not be particularly 
relevant from a global point of view. 

3.1.3. Stability of Fixed Points. It is desirable to calculate some of 
the stability properties of the fixed points of (7) (and hence of the periodic 
orbits on which they lie). Our analysis is only partial, but tells us all we 
need to know. We may writ~ the linear part of (7) as 

r / Iz, l l Ao  llrl 
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where 

A = az %os(~ In z + qSl) 

B = flrz ~ - '  [ 8 cos(~ In z + ~2) - ~ sin(~ in z + (b2) ] 
(13) 

C = a r z ~ - l [ 8 c o s ( ~ l n z  + ~1) - ~sin(~lnz + ~ l ) ]  

D = flz %os(~ In z + ~2) 

The eigenvalues of the matrix will be 

+ + _ 

It is clear that when 8 > 1 these eigenvalues will always be small in 
modulus if z is small (z n and z ~- 1 will both be small). Thus the fixed point 
of (7) will be stable if it occurs with small z, and hence the one periodic 
orbit existing in/z > 0 for 8 > 1 is stable for/~ small enough. 

The case 6 < 1 is a little more complicated. First notice that the 
determinant of the matrix, A B -  CD,  only contains terms of size z 28- l 
Thus, the map will be area contracting for 1 > 6 > 1/2 and area expanding 
for 6 < 1/2, and we can expect different results in these two 6 ranges. To 
obtain more information we look at two sets of z values (but always z << 1). 
These are those for which B = 0 or D = 0. The choice of these sets of z 
values is made because B and D contain the same trigonometric functions 
which appear in the right-hand side of the equation (9); that equation told 
us the z coordinates of the fixed points for various values of/z and 8 and so 
the conditions B = 0 and D -- 0 will be easily interpreted in terms of which 
fixed points are being considered. To be precise, the condition B -- 0 is the 
same as the condition that the fixed point occur on a turning point of the 
right side of (9) (the wiggly curves in Fig. 3.1) and the condition D = 0 is 
the condition that the fixed point occur at a point where the curve crosses 
zero. 

When D = 0 Eq. (14) reduces to a particularly simple form and we 
have eigenvalues A and B. Of these, A is always small (z 8 small) and B is 
always large (z a- l  large--note B va0 if D - - 0 ) .  In particular, for /, = 0 
[8 < 1; Fig. 3.1(v)] the fixed points of (7) occur with the condition D = 0 
nearly satisfied for z small enough; this implies that the countably infinite 
collection of fixed points existing at these parameter values contains only 
saddle points. 

When B = 0 the eigenvalues, (14), are {A + (A 2 + 4 C D )  1/2} and both 
eigenvalues will have large or small modulus depending on whether CD is 
large or small (A 2 ~ z  2~ can be neglected compared to C D ~ z  2~- l and then, 
similarly, A can be neglected compared to C D  ]/2). This, in turn, depends 
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on whether 6 < 1/2  or 6 > 1/2  (CD~z2~-1). Thus, B = 0 gives stable 
fixed points if 6 > 1/2  and unstable fixed points (sources) if 6 < 1/2. 

At this point we return to consideration of Fig. 3.2(ii). If we examine 
how the system appears as we alter/~ monotonically we observe # values 
(an infinite number  of them) on both sides of t~- -0  at which a pair of 
periodic orbits appears or disappears. At each such /~ value we have a 
saddle-node or tangent bifurcation, and, as is well known, such bifurcations 
produce (or destroy) either a s table/saddle  pair of orbits or an uns table /  
saddle pair of orbits. We deduce, from above, that the former is the 
case when 1 > 8 > 1/2  (at least for bifurcations occurring with /~ small 
enough), and the latter the case when 8 < 1/2. There is one additional 
piece of information we require to complete the picture; that is, which of 
the orbits is stable (6 > 1/2) or unstable (6 < 1/2) and which a saddle. 
Figure 3.3 shows a blow-up of a part  of the wiggly curve from Fig. 3.1 
[which is the right-hand side of Eq. (9)] together with the left-hand side of 
(9) for seven different values of/~. These sat isfy/q > / z  2 >/~3 >/~4 > 0 >/~5 
> ~6 > ~7. For/~ = ]z 6 we get the tangency and at/~ =/~5 we have two fixed 
points. From our analysis o f  the return map at fixed points we know that 

z~# 7 
Z-#~ 

z--~ 
z-#~ 
Z-p~. 

/ z-#~ 

Fig. 3.3. Intersections of z - # with a section of the curve given by the right-hand side of Eq. 
(9); ~ > #2 > t~3 > #4 > 0 > ~t 5 > 1~6 ~ ~7. 



658 Glendinning and Sparrow 

period 

15 
r 

j -  

-% 
1 

- - - n o n - s t a b l  e orbit 

stGble orbit (6 > ~'z) 
o r  u n s i e b l e  o r b i t  (6 <'/:0 

- -<--  p e r i o d  doubling 

N f a r c a t i o n  

--4 . %  

I / 

Fig. 3.4. 

#<O ~>O 

Stability information for the bifurcation curve (~ < 1) of Fig. 3.2(ii). The stable 
(unstable) sections of the curve appear, in examples, to be very short. 

the fixed point at the maximum of the wiggly curve is the stable (unstable) 
one; the other must be the saddle. Of the two fixed points at/~ = ~t 5 it is the 
one with the larger z coordinate, i.e., the lower period, which is stable 
(unstable). 

As we continue to increase/~ into/~ > 0 we reach tt 4 where we know 
the fixed point is again a saddle. Clearly the fixed point has lost stability 
(unstability) in a period-doubling bifurcation. As/~ increases to ~3 we see 
that the fixed point, which again lies on a turning point of the wiggly curve, 
has become stable (unstable) again, and this restabilization must occur 
through a reverse period-doubling bifurcation. At /~ =/~2 we get the next 
saddle-node bifurcation and deduce that at this bifurcation (in/~ > 0) it is 
the orbit of higher period which is stable. This information allows us to 
redraw Fig. 3.3(ii) as in Fig. 3.4. We now have complete stability informa- 
tion for the curve shown. 

3.2.4. Sil'nikov's Results. We have shown, explicitly, how a 
periodic orbit approaches homoclinicity in the two cases/~ < 1 and 8 > 1. 
This demonstration is, as far as we know, new, but the ideas and techniques 
behind it date back to Sil'nikov. (1'2) We have, by now, reproduced Sil'- 
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nikov's original results insofar as they relate to fixed points of the return 
map (7). These state that (a) for 6 < 1 and /~ = 0 there are a countable 
infinity of periodic orbits in a neighborhood of the homoclinic orbit, all of 
which are saddles, and (b) that for 6 > 1 there is one stable periodic orbit 
in a neighborhood of the unstable manifold of the stationary point in/~ > 0. 

There are deeper implications of Sil'nikov's results and approach for 
the case/~ = 0, 8 < 1, which concern the complicated recurrent behavior, 
occurring near the homoclinic orbit, which is not represented by fixed 
points of (7) but by periodic or aperiodic points. For example, it is known 
that the invariant set of the return map (7) (/~ = 0, 6 < 1) contains one 
trajectory corresponding to each doubly infinite sequence of n symbols for 
any n however large; less precisely, the return map contains an infinite 
number of horseshoe maps (see, for example, Ref. 4 or 10). Intuitively and 
loosely, one may think of one horseshoe developing on each of the stable 
branches of the bifurcation curve shown in Fig. 3.4. In other words, on 
each of these branches we have not only the period-doubling bifurcations 
that destabilize and restabilize the periodic orbit represented by the curve 
of Fig. 3.4, but complete period-doubling cascades, and a countable infinity 
of other period-doubling cascades following or preceding saddle-node bi- 
furcations, leading to a full horseshoe map at # = 0. A recent paper by 
Yorke and Alligood (11) outlines a proof of a theorem stating that, in certain 
circumstances, infinitely many cascades of period-doubling bifurcations 
must occur in the formation of a horseshoe. This result gives something of 
the flavor of the situation leading up to homoclinicity at/~ = 0 but cannot, 
in fact, be applied directly here; our situation is much more complicated 
due, in part, to the existence of infinitely many homoclinic orbits in 
addition to the principal one discussed so far (see below) and, in part, to 
the fact that the invariant set of (7) contains periodic orbits and trajectories 
which communicate between horseshoes--we may not properly consider 
the developments on each branch of Fig. 3.4 separately, at least for the 
large period branches. 

All of these results do not, in general, contribute much to our under- 
standing of numerical results, or to our understanding of how the compli- 
cated series of bifurcations occurring near a homoclinicity fits into more 
global bifurcation pictures. Consequently we do not dwell on them. We will 
see, though, that our simpler considerations below give considerable insight 
into the more complicated structures. 

3.2. Subsidiary Homoclinic Orbits 

When/~ > 0 it is possible that the unstable manifold of the origin, after 
one or more close encounters with the stationary point which pass off 
without homoclinicity being achieved, will eventually arrive back in the 
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Fig. 3.5. A double pulse subsidiary homoclinic orbit which passes only once near the 
stationary point without achieving homoclinicity. 

linear region of our analysis with z = 0 and from there spiral back into the 
stationary point. In other words, we may have more complicated homo- 
clinic orbits than the one which occurs at/~ = 0. If such exist we shall call 
them subsidiary homoclinic orbits. The homoclinic orbit at t~ -- 0 we call the 
principal homoclinic orbit. We examine only the simplest possible subsidiary 
homoclinic orbits, occurring when the unstable manifold of the stationary 
point has only one unsuccessful encounter with the stationary point before 
achieving homoclinicity. The situation we hope to find is shown in Fig. 3.5, 
which, we have recently discovered, has also been studied by Gaspard ~12) 
using techniques almost identical to those described here. In addition, 
Hastings O3) discusses the existence of such orbits in a particular three- 
dimensional system whose solutions represent traveling waves in the Fitz- 
Hugh-Nagumo model of nerve conduction; he calls them "double-pulse" 
solutions, and we shall use this term to distinguish these orbits from other, 
more complicated subsidiary homoelinic orbits. See also Refs. 14 and 15. 

The unstable manifold first arrives back in our linear region with 
coordinates (? + a/~,/~). For/~ > 0 Eq. (7) gives us, for the next return, a z 
coordinate 

/~ + fl(~ + a/~)t~%os(~ln/~ + 02) 

If this coordinate is zero, we have located the homoclinic orbit we require; 
if it is positive the next return is defined and we may have more compli- 
cated homoclinic orbits occurring after more passages through the linear 
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Fig. 3.6. Two curves, - / ,  and fl(r + a#)/*acos(~ln ~t + ~2), which are the left and right sides 
of Eq. (15). Intersections of the curves give the # values at which double pulse subsidiary 
homoclinic orbits occur. (i) 8 > 1; (ii) 8 < 1. 

region; if it is negative the trajectory wanders off and is of no further 
interest. The critical condition is given, therefore, by 

- / x  = fl(~ + a/~)/~%os(~ln/z + q~2) (15) 

We treat this equation in the same way we treated Eq. (9). Figure 3.6 shows 
the two curves representing the left and right sides of (15) for d > 1 and 
6 < 1, and the intersections give the homoclinic orbits we require. In 6 > 1 
there are no such intersections for/~ small, though there may be some at 
larger/x particularly if 6 is close to one. When 6 < 1 we have a countable 
infinity of such intersections for small/~, and those occurring at smal ler / t  
are the ones which represent homoclinic orbits which spiral round more 
times on the first passage through the linear region (cf. the arguments of 
Section 3.1.2). Gaspard  (12) shows that successive double-pulse subsidiary 
homoclinic orbits occur at # values/ t i , / l /+l ,  etc. which are related asymp- 
totically by/t i+ 1/l~ s = exp(-7r•1/r ). This result may be obtained in almost 
exactly the same way that we obtained the asymptotic relation (12) in 
Section 3.1.2. Notice that if ~rXl/r is large these orbits may be hard to 
observe numerically and that we have 8 < 1 which implies ~rXt/r is large if 
7rX2/~0 [from (12)] is large. 

Notice, also, that Fig. 3.6 suggests that the intersections we get come in 
pairs; in other words, for a particular value of 8, and for a particular 



662 Glendinning and Sparrow 

[ 6>0 

fi 

6<0 

principal homocfinicity 

11 
~ < 0  ~ > 0  

subsidiary 
homocli nici t~ es 

Fig. 3.7. Curves in a two-parameter space (/~, 8) showing parameter values at which we have 
homoclinic orbits. Only double pulse homoclinic orbits are drawn. There are an infinity of 
hooped curves accumulating on/~ = 0. The curves may or may not encroach into 6 > 1 for 
/~>0. 

interval of /~ values such that  ~ln ~ varies over 2w, we either get no 
intersections or two (excluding the possibility of a tangency). This, in turn, 
suggests that  we can draw Fig. 3.7 which must  be interpreted differently 
f rom previous figures in this paper. In  Fig. 3.7 we have drawn a two- 
dimensional  parameter  space:/~ is one parameter  but  we now assume that 
we can change the system so that 8 varies also (but always with principal 
homoclinici ty at/~ -- 0). The curves of Fig. 3.7 represent parameter  values 
at which homocl inic  orbits occur.  The vertical line gives principal homo-  
clinicity for all 6 at/~ = 0. The other curves represent homoclinicities of the 
kind discussed above, i.e., homoclinic  orbits represented by solutions of 
(15). 

Figure 3.7 is very schematic, and actually we want  to be able to draw 
an infinity of hooped  curves accumulat ing on t~ = 0. The tops of the hoops  
should accumulate  at/~ = 0, 6 = 1. This picture then agrees with the results 
above;  if t~ is increased f rom zero at fixed 8 > 1, a finite number  of curves 
at finite t~ values are crossed, and if t~ is increased f rom zero at fixed 8 < 1, 
a countable  infinity of curves at arbitrarily small ~ values are crossed. 

It  would be interesting to speculate on the likely position of addit ional 
curves which could be drawn on Fig. 3.7 to represent even more  compli- 
cated homoclinic  orbits (those occurr ing after 2, 3, 4 . . . .  nonhomocl in ic  
passes through the linear region) but  we refrain f rom doing so here. Note,  
however, that  all such curves lie outside the hoops of Fig. 3.7 [because the 
space inside the hoops  is that  for which - / ~  > / 3 ( ?  + a/~)~%os(~ln ~ + ~2) 
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- -see  the remarks above Eq. (15)] and that curves may not cross since only 
one kind of homoclinicity can occur at any particular set of/~, 8 values. 

3.3. Predictions for Global Behavior 

Our major concern in this paper is to show how the local results 
obtained above fit into global bifurcation pictures. Before considering 
actual examples, there are some predictions we can make on the basis of 
the return map (7) and of our work so far. We first consider the behavior of 
numerically calculated trajectories near to principal homoclinicity, and 
then consider what we are likely to see in two-parameter systems where we 
can change both / t  and 8. 

3.3.1. The Behavior of Most Trajectories near Homoc~:nicity. 
When 8 > l, trajectories calculated numerically appear to behave as we 
would expect. In other words, for/z > 0 they appear to be attracted to the 
stable periodic orbit which is approaching homoclinicity, and for /~ < 0 
(when the analysis predicts no periodic orbits) they rapidly arrive on the 
wrong side of the stable manifold of the stationary point and disappear (to 
infinity in the example of Section 4.2). This can be understood by looking 
at the z coordinate of the return map (7). For large 8 trajectories will tend 
to return to the linear region with z coordinate near/~; thus, if/~ is positive 
they go round again, and if/~ is negative they are lost. When 8 < I, and 
despite the large number of stable orbits predicted by the analysis, most 
trajectories appear to be lost fairly rapidly. Again, the z coordinate of (7) 
shows why this should be. The cosine term multiplied by z ~ is now likely to 
be relatively large and many trajectories will return to the linear region with 
z < 0, even if # > 0. It is perhaps worth mentioning here that our experi- 
ence of examples is that the stable orbits predicted on alternate branches of 
the bifurcation curve for the principal periodic orbit (Fig. 3.4) exist only for 
very short parameter intervals, even when the total length of the whole 
branch is relatively large. Presumably the same applies, except more so, to 
more complicated periodic orbits and to stable chaotic motions that might 
be predicted by the analysis. To conclude, we expect most trajectories to be 
lost for /~ near zero if 8 < 1. [Note, however, that we can expect to see 
bounded motions near to homoclinicity if we have a symmetry such as that 
shown in Fig. 2.3(a); we are not considering that case here.] 

3.3.2. Local and Global Bifurcation Pictures. The analysis so far 
has been concerned mainly with Eq. (7) for r, z, and ~ very small, and 8 
definitely greater or less than one. It is interesting and useful to notice that 
if we consider (7), (9), and (16) for larger r, z, and # values, and for 8 close 
to one, we can see how a system could move smoothly from the 6 > 1 to 
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the 8 < 1  case. We do not consider this in detail, but Fig. 3.8 shows 
plausible bifurcation curves for the principal periodic orbit which could be 
extracted from Eq. (9) with suitable choices for the parameters a, c~,/3, ~1, 
~2, and 8. 

Notice that in all the diagrams of Fig. 3.8 we can select a parameter 
interval, t P-] < E, such that outside this interval the only periodic oi'bit in 
existence is a Single stable periodic Orbit. There may be many situations 
when �9 'we-will be justified, from a global point of view, in' ignoring the 
details of what happens near to  homoclinjclty, and thinking of this princi- 
pal periodic' orbit as being the on13/p?oduct Of the whole seriesof bifurca- 
t ionswhich Occurs near to homoclinicity. We shall see, when we examine 
examples, that this point of view can be useful. I6 particular, we find it 
useful Jn ~ree.slightly different cases, all of  which can be expected to occur 
frequently.in a wide variety 9 f systems. 

(i) .A system may be-of interest primarily because of some sequence 
of bifurcations other than those associated with a homoclinicity of the type 

P 

i..:~0 " > 0  . . . . .  , , ~ 4 0  

_ .  1" " . . . .  ~. :  : '  "1" 

P 
�9 , ; "  .... " 5 " > 1  

5 <  c 

l.J. > 0 

Fig. ,3 .8 . .  Possible result.(,of consider ing ..Eqs..(7), (9) outside the region z..~ << .I. W e can 

expect  bifurcation curves such as those shown here in numerical  examples ,  particularly if 8 is 

near one. 
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discussed here. In that case, we may want to know how many orbits our 
type of homoclinicity contributes to the other sequence of bifurcations. The 
answer, it seems, will often be just the one principal orbit which, we should 
notice, will be stable (or unstable) if it emerges from the interval ]~1 < c 
into /z > 0 (as in Fig. 3.8) but which will be nonstable (a saddle) if it 
emerges into /z < 0 (which is also possible). In this kind of case our 
one-orbit point of view may be useful even if the parameter interval IV] < 
is relatively large (cf. Section 4.1). 

(ii) Experience suggests that many systems of equations have very 
similar global bifurcation pictures and very similar sequences of numerical 
behavior changes. If we desire to describe one of the frequently occurring 
bifurcation patterns that involves complicated sequences of homoclinic 
orbits, we will not wish to be distracted from the general picture by such 
details as exactly which homoclinic orbits occur with 6 < 1 and which with 
6 > 1. In such cases the one-orbit point of view is very useful for blurring 
over the complications consequent on thinking of 6 < 1 and 6 > 1 as two 
quite distinct cases, and is often easily justified in the sense that the relevant 
parameter intervals, 1/~] < ~, are very small (cf. Sections 4.2 and 4.3). 

(iii) In some systems with bifurcation curves like those shown in Fig. 
3.4 or 3.8, we find that the parameter distance between the two period- 
doubling bifurcations occurring on the lowest branch of the bifurcation 
curves is an order of magnitude larger than the length of a parameter 
interval needed to cover all the rest of the behavior near to homoclinicity. 
This occurs, in particular, when the quantities ~rk2/0~ and ~r?~l/~0 are small 
at homoclinicity as explained in Sections 3.1.2 and 3.2. In these cases 
almost all of the numerically observed behavior is due to bifurcations 
associated with the lower branch and there are good reasons for consider- 
ing this sequence of bifurcations separately from the rest of the behavior 
changes associated with the principal homoclinicity. Foremost amongst 
these reasons is the observed fact that much of the behavior associated with 
the lowest branch occurs far from principal homoclinicity and in regions of 
phase space far from the homoclinic orbit. Thus, even if the bifurcations 
which are observed seem to fit into a pattern compatible with patterns 
predicted by the local analysis for higher branches of the bifurcation curve 
of the principal periodic orbit, we maintain that it is not sensible to claim 
that they can be properly predicted by the local analysis; in addition, it is 
on the lowest branch that deviations from the behavior predicted by the 
local analysis are most likely to occur. In some systems numerically 
observed behavior may be due to bifurcations occurring on several 
branches of the principal bifurcation curve (Figs. 3.4 or 3.8) at once, but in 
the situation described above we find it useful to think of principal 
homoclinicity as producing just one periodic orbit, which then undergoes a 
series of bifurcations which we study separately. 
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Before proceeding to study examples, it is worth making some final 
remarks about the local analysis in the light of the remarks above. In 
Section 3.2 we showed the existence of an infinity of subsidiary homoclinic 
orbits in bt > 0 when 8 < 1. Clearly, we could analyze each of these 
homoclinicities in the same way that we analyzed the principal homoclinic 
orbit, gaining, in the process, some idea of the deep levels of self-similarity 
inherent in the bifurcation structure near a principal homoclinic orbit. 
More immediately, we can ignore the details of the bifurcations occurring 
near to a subsidiary homoclinic orbit and suppose, in the spirit of the 
remarks above, that each contributes just one periodic orbit to the local 
bifurcation picture of the principal homoclinicity. Remembering that sub- 
sidiary homoclinic orbits occur in pairs (Section 3.2 and Fig. 3.7) there are 
two obvious possibilities for the way in which these orbits enter the local 
picture, both illustrated in Fig. 3.9. Figure Y9(i) shows the situation which 
we believe exists for the double-pulse subsidiary orbits described in Section 
3.2; each pair of subsidiary homoclinicities produces a pair of orbits which 
utimately diverge (in parameter space), each going to one of the period 
doublings occurring on a branch of the principal periodic orbit's bifurca- 
tion curve. It seems likely that the two orbits go off in different directions 
in parameter space because if we define two new parameters, F~ and /~2, 
which are zero at the two subsidiary homoclinicities, respectively, then in 
analogy with our analysis of the principal homoclinicity (see Fig. 2.1) we 
will have bo t h / h  and F2 less than zero in the F interval between the two 
subsidiary homoclinicities and, in general, we expect the one orbit "pro- 
duced" by a homoclinicity to exist in the region F > 0. We expect these 

(i') ~ pair of doubt~- (ii) 
pulze subsTdiary 

hornoc[inicities 

] l orbit 
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la~O 

q ~alr  of 
s u b s l d i o r /  
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Fig. 3.9. Bifurcation curves for the periodic orbits produced by subsidiary homoclinic orbits 
(8 < 1). (i) Conjectured bifurcation diagram for double pulse subsidiary hornoclinic orbits. (ii) 
It is possible that a pair of orbits produced by a pair of subsidiary homoclinic orbits join up; 
this is considered unlikely for the double pulse orbits (see text). 
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orbits to join up with the period-doubled orbits from the principal bifurca- 
tion curve by analogy with the numerical results of Section 4.2 on the 
lowest branch of the principal curve; this also seems reasonable if we 
attempt to match up orbits with similar amounts of spiralling near the 
stationary point. Figure 3.9(ii) shows the other obvious possibility, where 
the two orbits just join up; this may well occur for some of the more 
complicated subsidiary orbits which we have not examined, even if it is 
never correct for double-pulse subsidiaries. 

4. EXAMPLES 

In this section we will study three examples of systems of ordinary 
differential equations having, for some parameter values, homoclinic orbits 
of the type analyzed in previous sections. The numerical experiments 
reported below were all done using standard integrating packages. The 
technique used to follow periodic orbits with changing parameters is similar 
to that described by Sparrow, (16) but the bifurcation curves which involve 
following orbits through several saddle-node bifurcations were obtained by 
adapting that technique so that it searched for new positions of the orbit 
using a fixed increment in period rather than a fixed increment in parame- 
ter. 

4.1. The Lorenz Equations 

The Lorenz equations (17) are a well-known system of differential 
equations displaying a variety of different chaotic behaviors. The equations 

* = o ( y  - x )  

j~=rx  y xz (16) 

2 = x y -  bz 

are usually studied for parameter values o = 10, b = 8/3,  and 0 < r < oo, 
for which values our previous discussion is irrelevant. However, it is argued 
in Ref. 16 that for small enough b values (or large enough a values) there 
will be symmetric heteroclinic orbits between the two stationary points 
( _ + [ b ( r - 1 ) ]  1/2, +_[b(r-1)]l/2,r - 1) for some r value. When o =  10, 
small enough b appears to include all of b < b* for some 2 < b* < 8/3,  
and for o = 10, b = 0.25, the relevant r value appears to be r* ~487.16.  At 
these parameter values the eigenvalues of the linearized flow near the two 
stationary points are approximately -14.371 and 1.560 _+ 12.912i and we 
have, therefore, if we reverse the direction of the flow, the situation shown in 
Fig. 2.3. Notice that the equations (16) have the symmetry ( x , y , z ) ~  
( - x ,  - y ,  z), implying that the heteroclinic connections (which occur when 
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one branch of the one-dimensional stable manifold of each point is in- 
cluded in the two-dimensional unstable manifold of the other point) occur 
simultaneously as shown in the symmetric Fig. 2.3. 

The analysis of our previous sections will apply to this situation, with 
obvious adjustments to cope with the symmetry, if we consider the Lorenz 
equations in reverse t ime.  (The direction of the flow will make no difference 
to topological results, e.g., the existence of periodic orbits, but it will affect 
stability considerations.) The relevant parameters from the previous analy- 
sis will be i~ ,~ 0.108, (~ < 1/2), and/~ > 0 of previous sections corresponds 
with the parameter range r > r* as can be seen from Fig. 4.1. Figures 4. l(i) 
and 4.1(iv) show both branches of the stable manifold of the stationary 
point which lies in x > 0 at parameter values relatively far from homoclin- 
icity. 

/) 
/I 

I I 

1 I 

l 
(]ii) -~ ( i v )  

! 

Fig. 4.1. The stable manifold of the stationary point  in x > 0 (calculated by integrating the 
equation backwards  in time). (i) r = 480.0, both  branches;  (ii) r = 487.23; (iii) r = 487.25; (iv) 
r = 500.0 both  branches.  
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The branch which oscillates less fiercely goes straight out to infinity in 
the same direction on both sides of the bifurcation (cf. z < 0 in Section 2) 
so it is the fiercely oscillating branch which interests us. Since, in Fig. 4. l(i), 
this branch tends to infinity in the same direction as the less fiercely 
oscillating branch of the other stationary point (remember the symmetry) it 
is clear that Fig. 4.1(i) corresponds to the case /~ < 0. The principal 
symmetric heteroclinic connection occurs at r*~487.16 and a series of 
subsidiary homoclinic or heteroclinic connections can be seen to occur in 
r > r* as the fiercely oscillating branch of the stable manifold changes its 
behavior and tends alternately to _ ~ .  Principal heteroclinicity occurs 
between Fig. 4.1(i) and Fig. 4.1(ii), and subsidiary connections occur 
between Figs. 4.1(ii) and 4.1(iii) and between Figs. 4.1(iii) and 4.1(iv). 
Many other direction changes can be also observed with relative numerical 
ease. 

We will concentrate here on the simplest orbits occurring near r = r*, 
but notice the following correspondences between the analysis of Section 3 
and the results of a full analysis for the symmetric system: 

i. Fixed points of the nonsymmetric analysis will give symmetric 
periodic orbits of the symmetric system. 

ii. Periodic points of odd period in the nonsymmetric analysis will 
also give symmetric orbits in the symmetric system. 

iii. Periodic points of even period in the nonsymmetric analysis will 
give symmetric pairs of nonsymmetric orbits in the symmetric system. 
Similar correspondences will occur between the more complicated (sub- 
sidiary) homoclinic orbits occurring in the nonsymmetric analysis and 
either more complicated (subsidiary) symmetric heteroclinic connections or 
symmetric pairs of homoclinic connections in the symmetric system. Here 
we look only at the orbits corresponding to fixed points of the nonsym- 
metric analysis. Hence we are going to look at certain symmetric orbits 
occurring in the Lorenz system. 

Figure 4.2 shows a bifurcation curve, calculated numerically, for the 
principal symmetric orbit. This is a stunning example of the 8 < 1 approach 
to homoclinicity; we only stopped following the curve of Fig. 4.2 because 
the wiggles were getting very small, not because there were numerical 
problems with going further. Figure 4.3 shows the orbit in question at the 
three points marked (*), (**), and (***) on Fig. 4.2. As explained in Section 
3.1.2, the orbit "winds itself up" about the stable manifolds of the station- 
ary points as we follow the bifurcation curve back and forth. Observe that 
our various calculations concerning the shape of the bifurcation curve 
(Section 3.1.2) give answers compatible with the numerically calculated 
curve in Fig. 4.2. Thus, the period of the orbit at successive intersections of 
the curve with r = r* increases by an approximately constant amount 
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Fig. 4.2. Bifurcation curve for the symmetric  principal orbit  in the Lorenz equations (not to 
scale) ,  b = 0.25, o = 10.0. The orbit  is produced in a homoclinic "explosion" involving the 
stationary point  at the origin, a n d  d i s a p p e a r s  in the heteroclinic bifurcation involving the other  
two stationary points. The orbit  is illustrated at (*), (**), and (***) in Fig. 4.3. 

[~r /w~0.244 ,  Eq. (11) of Section 3.1.2; we need 2~r/a~ since the nonsym- 
metric analysis looks at only half of the orbit], and, at the accuracy we have 
used, the parameter distance between successive saddle-node bifurcations is 
tending to a constant ratio [exp(-~rkz/Oa)~0.684,  Eq. (12) of Section 
3.1.2]. This ratio is reasonably near unity and the size of the oscillations in 
Fig. 4.2 decreases only slowly. 
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Fig. 4.3. The orbit from Fig. 4.2 illustrated at points ( , )  r = 2 6 . 0 ,  period ~ 7 . 0 ;  (**) 
r = 490.0, period ~ 3.52; (***) r = 501.0, period ~ 6.0. 

When we come to consider the stability of the orbits our numerically 
observed results also agree with the results of Section 3.1.3. In this case, 
however, we have an additional theoretical consideration which we can 
bring to bear. It  is well known that the Lorenz equations have a constant 
negative divergence ( =  - o - b - 1) and hence that there can be no totally 
unstable (source) objects (stationary points, periodic orbits, strange invari- 
ant sets, etc.) in the flow. This implies that there can be no stable (sink) 
objects in the reversed time Lorenz equations to which the analysis of 
Section 3 applies. Since we have ~ < 1/2  this result is not unexpected 
(Section 3.1.3); each of the saddle-node bifurcations in the reversed time 
Lorenz flow involves one saddle and one unstable orbit. Note  also that we 
have the bifurcating branches of Fig. 4.2 going from r > r* (/L > 0) to 
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Fig. 4.4. Chaotic behavior near heteroclinicity, r = 490.0. 

r < r* (/~ < 0) as period increases. This agrees with Section 3.1.3 and Fig. 
3.4. 

It is interesting to note that despite the large number of stable orbits 
expected for r ~ r* in the forward time Lorenz system, typical trajectories 
calculated numerically at r values near r* do not appear to be attracted to 
any of them; though trajectories spend a considerable amount of time close 
to the heteroclinic orbits (as shown in Fig. 4.4), they repeatedly escape from 
this region and are only reinjected by other parts of the global flow after 
wandering far from the region of validity of any local analysis of the 
heteroclinic bifurcation. For more details of the global flow at these 
parameter values see Ref. 16; it appears that much of the global flow can 
only be understood in terms of homoclinic bifurcations associated with the 
stationary point at the origin (which we have not considered here and 
which has three real eigenvalues) and can definitely not be deduced from 
local analyses of the heteroclinic orbits. This wandering behavior is not, 
however, unexpected. Regardless of the direction of the flow and the 
stability of the orbits, we expect most trajectories eventually to move away 
from the region of local analysis (cf. Section 3.3.1) and in the case of the 
Lorenz equations (forward time) the dissipative nature of the flow, which 
ensures that all trajectories remain within a bounded region, seems to 
ensure that most typical trajectories are reinjected into the region of the 
local analysis after visiting other parts of phase space. 
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Before leaving the Lorenz equations, one further remark is in order. In 
Ref. 16 (Chapter 8) the occurrence of the heteroclinic connections was 
deduced after consideration of some relatively complicated conjectures 
about a global bifurcation picture for parameter values a = 10, b = 0.25, 
and 0 < r < ~ .  These considerations led to the conclusion that there was 
one periodic orbit of a certain type which must be involved in some 
bifurcation other than the well-known homoclinic bifurcations at the orgin, 
period-doubling, saddle-node bifurcations etc. This orbit was the one 
illustrated in Figs. 4.2 and 4.3, and Sparrow (16) did conclude that the orbit 
eventually disappeared from the global bifurcation picture in a bifurcation 
involving heteroclinic orbits like those discussed here. The other side of 
these arguments (which appear reliable, though conjectural) is that the 
heteroclinicity discussed here contributes only this one orbit to the global 
bifurcation picture. In other words, for r outside a large enough r interval 
about r*, the combined effect of the bifurcations discussed here (principal 
heteroctinicity, subsidiary homoclinic, and heteroclinic orbits etc.) is to add 
one and only one orbit to the global picture. This argument (which we 
cannot give in full here) adds plausibility to the remarks in Section 3.3.2, 
even though the relevant r interval is rather large (211 < r < 1353). Notice 
that the orbit is injected into the global picture in r < r* (/~ < 0), and hence 
is nonstable (a saddle). 

[N.B. This paper, where it contradicts Ref. 16, is to supercede that 
work. In particular, and as is argued here, the subsidiary homoclinic and 
heteroclinic bifurcations occur on only one side (r > r*) of the principal 
heteroclinic connection, and not on both sides as stated in Ref. 16.] 

4.2. An Example from Arneodo et aL (Ref. 3) 

4.2.1. Introduction. Arneodo e t  al. (3) investigate the ordinary dif- 
ferential equations 

"5c'+5~ + b ~ c  - c x  + x 2 = 0 (17) 

which they derive from normal form theory near a tricritical bifurcation. 
Equation (17) can be written as three coupled first-order differential equa- 
tions: 

A = y  

? = z (18) 

2 =  - z - b y +  c x  - x 2 

The divergence of (18) is - 1, so there are no completely unstable trajecto- 
ries (otherwise the flow would be locally expansive); all periodic orbits are 
either stable or saddles. Arneodo e t  a l .  (3) have observed chaotic trajectories 
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at some values of the parameters b and c, and they have also located 
homoclinic orbits. Thus (18) provides us with an opportunity to confirm the 
local analysis of Section 3. 

Following Arneodo et a/. (3) we shall work in the region of parameter 
space with b, c > 0 (see Fig. 4.5, which is taken from Ref. 3) and compute 
bifurcation sequences with b fixed and c increasing. Arneodo et al. 0) 

investigated b -- 0.5, 0.8, and 2.0; we use these lines and also b -- 1.5. Many 
of our results were known to Arneodo e ta / . ,  but we are able to explain our  
observations in terms of the local analysis of Section 3 and incorporate 
them into a global bifurcation picture. 

The system (18) has two stationary points: the origin, O, (x = y  = z 
= 0) and B (x = c, y = z = 0). We shall be interested principally in the 
origin, which plays the role of the stationary point in Sections 2 and 3. For 
c > 0 the origin is always nonstable. Outside the eusplike region near the 
origin of parameter space in Fig. 4.5, the linearized flow at the origin has a 
complex conjugate pair of eigenvalues and one real eigenvalue. When c > 0 
the real eigenvalue is positive and the real part of the complex conjugate 
pair of eigenvalues is negative. The ratio 8 of the real parts of the 

2D 

l.S 

0.~ 

O.S 

J 

S>/z - S<l 

I" r t "  

Fig. 4.5. (b, c) parameter space of (18) showing the eigenvalues at the origin, the locus of a 
homoclinic orbit to the origin, HO, and the locus of the Hopf bifurcation from B. 
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eigenvalues is unity a long the line ma rked  8 = 1 in Fig. 4.5 given by  

b = c - 2 (19) 
c >  - I  

Homocl in ic  orbits occurr ing for pa rame te r  values to the left of this line (i.e., 
small  c) have  6 > 1 and  homocl in ic  orbits occurr ing for pa rame te r  values 
to the right of this line (i.e., large c) have  6 < 1. The  locus of a homocl inic  
orbit  found  by  Arneodo  et al. (3) is also shown in Fig. 4.5; it intersects the 
line 6 = 1 at  b = b I ~ 1.375, c = c 1 ~ 3.375. Therefore,  as we vary  c with b 
fixed we will find the homocl in ic  orbit  in the region of pa ramete r  space 
with 6 > 1 if b < b 1 (and hence for b = 0.5 and  0.8) and  with 6 < 1 if 
b > b I (and hence for b = 1.5 and  2.0). 

Fo r  fixed b, suppose the homocl in ic  orbit  occurs at c = c b. Then  in the 
terminology of Section 3, /t = 0 when c = %  (this is the condit ion for 
homoclinici ty) ,  /~ > 0 corresponds  to c < c b and  /~ < 0 corresponds  to 
r > c b. This observat ion  will be  impor tan t  when we come to compare  our  
results with the predict ions of Section 3. 

The  second s ta t ionary point,  B, is stable for 0 < c < b but  (see Fig. 
4.5) loses stability when c = b in a supercrit ical  H o p f  bi furcat ion which 
creates an initially stable periodic orbit. We  shall call this orbit  the principal  

periodic orbit since, as we shall see, it corresponds  to the homocl inic-re la ted 
definit ion of pr incipal  periodic orbit  given in Section 3.1.2. 

4.2.2. The Approach to Homoclinicily. Numer ica l  exper iments  
indicate that  the principal  per iodic  orbit  born  in the H o p f  bi furcat ion at 
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Fig. 4.6. The  pr inc ipa l  homoc l in ic  orbi t  (approximate ly) ;  b = 1.5, c = 3.76113. 
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c = b is, in fact, the orbit which eventually forms the principal homoclinic 
orbit of Fig. 4.5. This orbit is shown, for b = 1.5, in Fig. 4.6. 

Figure 4.7 shows the period of the principal periodic orbit as it is 
followed with changing c at the four fixed b values investigated. Figure 4.7 
should be compared with Figs. 3.2, 3.4, and 3.8 which illustrate the 
predictions of Section 3. 

We have not followed any orbit far enough to confirm all the quantita- 
tive results of Section 3.1.2; exp(-~r?,2/~0), the factor which controls the 
convergence of the wiggles when 6 < 1, is small (0.136 for b = 1.5 and 0.157 
for b = 2.0) so the width of the wiggles becomes small very quickly. 
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Fig. 4.7. Period of the principal period orbit plotted against c as the orbit approaches  
homocl inici ty .  (i) b = 0.5; (ii) b = 0.8; (iii) b = 1.5; (iv) b ~ 2.0. The  numbers  give e values at 
which saddle node  bifurcations occur.  
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Although the upper portions of all the curves in Fig. 4.7 look similar, Figs. 
4.7(i) and 4.7(ii) actually show the direct 8 > 1 approach to homoclinicity 
whereas Figs. 4.7(iii) and 4.7(iv) (8 < 1) continue to oscillate as indicated 
by the parameter values on the figures. 

Observe that for b = 0.5 and b = 2.0 (8 = 1.29 and 8 = 0.94, respec- 
tively) we have obtained figures similar to those which relate to the 
asymptotic local analysis (Fig. 3.2), whilst b = 0.8 (8 = 1.14) gives results 
more like those of Section 3.3.2, which discussed the behavior further from 
homoclinicity and, in particular, for 8 near to one. 

4.2.3. Stability. The linearized eigenvalue equation at the origin 
for the system (18) is 

X 3 + X 2 + b X -  c = 0 (20) 

Thus it is impossible to have 8 < 1//2 (since if XI is the real eigenvalue and 
- X  2 is the real part of the complex conjugate eigenvalues, X 1 - 2X 2 = - 1), 
so we are only interested in the stability predictions of Section 3.1.3 in 
8 > 1 and 1 > 8  > 1//2. 

(i) 8 > 1 (b - -0 .5 ,  0.8). The analysis of Section 3.1.3 predicts that 
the orbit will be stable as it approaches homoclinicity with increasing c. 
Therefore, if the orbit loses stability after the Hopf bifurcation (which i't 
does, by period doubling, for all four b values we investigated) it must be 
restabilized before its final approach to homoclinicity. For both b = 0.5 and 
b -- 0.8 this restabilization is achieved by a reverse period-doubling bifurca- 
tion. Numerical experiments confirm that the principal periodic orbit 
remains stable once it starts its final asymptotic approach to the homoclinic 
orbit. 

(ii) 1 > 8 > 1/2 (b = 1.5,2.0). Figure 4.8 shows the stability of the 
principal periodic orbit as it approaches homoclinicity for b----1.5. The 
diagram was constructed by calculating the Floquet exponents of the 
principal periodic orbit numerically whilst following it as it approaches 
homoclinicity. 

As we follow the principal periodic orbit from one saddle-node bifur- 
cation to the next along the branches of the curve which go from left to 
right with increasing period, the orbit is initially stable, then loses stability 
in a period-doubling bifurcation and is eventually restabilized in a reverse 
period-doubling bifurcation before reaching the next saddle node bifurca- 
tion. Along the other branches (right to left with increasing period) the 
orbit is always nonstable. All this is as predicted in the local analysis of 
Section 3.1.3. Compare Fig. 4.8 with Fig. 3.4 remembering that /~ > 0 
corresponds to c < c b. 
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Fig. 4.8. The stability of the principal periodic orbit as it approaches homoclinicity with 
6 <  1, b =  1.5. 

4.2.4. Subsidiary Homoclinic Orbits. Near a homoclinic orbit 
with 6 < 1, Section 3.2 predicts sequences of subsidiary homoclinic orbits 
with increasing numbers of twists about the origin as C approaches c b from 
below. For b = 1.5 and b -- 2.0 we have located some of the double-pulse 
subsidiary homoclinic orbits; those we have observed spiral only a very 
small number of times about the stationary point, and consequently are the 
outermost ones (those with largest ~) predicted by the local analysis. The 
geometric ratio, exp(-qT~kl/(O), which controls the rate of convergence of 
parameter values for which double-pulse homoclinic orbits occur is small 
( ~  0.1), so it is not surprising that very few such orbits can be observed. In 
fact, the whole sequence of observed homoclinicities, from outermost 
double-pulse subsidiary to principal, occurs in a very small parameter range 
(3.76105 < c < 3.76113 when b = 1.5). We do observe other homoclinic 
orbits at parameter values further from homoclinicity (in e < Cb) , but we 
shall not discuss these as subsidiary homoclinic orbits for reasons explained 
below. 

4.2.5. The Global Bifurcation Picture. We need to go beyond the 
local analysis if we are to understand the global bifurcation picture and the 
occurrence of numerically observable chaos. At present no general method 
exists so we proceed by prudent numerical experiments. 

Observe that the upper branches of the bifurcation curves in Fig. 4.7 
occupy a very small range of parameter values close to the principal 
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Fig. 4.9. Schematic bifurcation curves (at fixed b) for the principal periodic orbit and orbits 
which bifurcate from its lowest branch. Parameter values on the figure are the relevant c 
values. (i) b = 0.5; (ii) b = 0.8; (iii) b = 1.5. 
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homoclinic value. These ranges do not include values where chaos is 
observed numerically. Consequently, we concentrate on the lowest branch 
of the bifurcation curves shown in Fig. 4.7 and the orbits which bifurcate 
from it (bifurcations on this branch of the curve do occur on either side of 
interesting behavior). It is worth noting that with this emphasis it is not 
particularly important whether we have 8 < 1 or 6 > 1 at principal homo- 
clinicity; despite the change in the local asymptotic analysis with changing 
6, the behavior on the lowest branch will change smoothly as the parame- 
ters vary and, in some sense, we may consider the development indepen- 
dently of the other changes occurring in the system. The lowest branch, 
being further from principal homoclinicity, is also the branch on which one 
is most likely to find deviations from the predictions of Section 3, and this 
is another reason for studying it (cf. Section 3.3.2). A schematic view of the 
bifurcation diagrams for b = 0.4, 0.8, and 1.5 is given in Fig. 4.9. 

When b = 0.5 ~3) the principal periodic orbit loses stability in a period- 
doubling bifurcation. The stable doubly periodic orbit produced in this 
bifurcation looks like the one shown in Fig. 4.10(i). This orbit remains 
stable until it restabilizes the principal periodic orbit in a reverse period- 
doubling bifurcation, and then the principal periodic orbit approaches 
homoclinicity as was shown in Fig. 4.7(i). 

The path with b -- 0.8 ~ starts out like b = 0.5, but the orbit born in 
the period-doubling bifurcation loses stability in a further period-doubling 
bifurcation [Fig. 4.9(ii)]. There is then a sequence of period-doubling 
bifurcations leading to numerically observable chaos, despite the fact that 
8 > 1 at homoclinicity. Chaotic trajectories look similar to that displayed in 
Fig. 4.10(ii) which has b = 2.0. This sequence of bifurcations then reverses, 

• 

yi! 

!t 

Fig .  4 .10 .  (i) A d o u b l e  p e r i o d i c  o r b i t ;  b = 2 .0 ,  c = 3 .26 .  (ii) A c h a o t i c  t r a j e c t o r y ;  b = 2 .0 ,  

c = 3 .69 .  
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Fig. 4.11. The period of the doubled orbit (DO) was plotted with two times the period of the 
principal periodic orbit (PPO) for b = 0.5 and b = 0.8, Note the development of a bump.  (i) 
b = 0.5; (ii) b = 0.8. 

eventually restabilizing the principal periodic orbit. In particular, we have 
followed the orbit created by the first period-doubling bifurcation through 
the chaotic regime and it is, indeed, the orbit which restabilizes the 
principal periodic orbit. In Fig. 4.11 we have plotted the period of this 
doubled orbit, together with two times the period of the principal periodic 
orbit, against the parameter c. Notice the difference in shape of the two 
graphs. When b = 0.8 the period of the doubled orbit no longer stays close 
to twice the period of the principal periodic orbit, but has developed a 
bump. We shall see shortly that this heralds an important change in the 
bifurcation sequence. Once the principal periodic orbit has restabilized it 
approaches the principal homoclinic orbit as was shown in Fig. 4.700. 

At b = 1.5 [Fig. 4.9(iii)] we observe the sequence of period-doubling, 
chaos and reverse period-doubling bifurcations as before, eventually re- 
stabilizing the principal periodic orbit on the lowest branch of the wiggly 
curve shown in Fig. 4.7(iii). However, the periodic orbit created by the first 
period-doubling bifurcation is not the orbit which restabilizes the principal 
periodic orbit. If we follow the former we find it approaches a homoclinic 
orbit with an extra loop about the second stationary point, B. See Fig. 
4.12(i), which shows this orbit close to homoclinicity. Similarly, the orbit 
which restabilizes the principal periodic orbit can be followed back to a 
(different) homoclinic orbit with an extra loop [Fig. 4.12(ii)]. This sequence 
of bifurcations appears essentially unchanged when b = 2.0. 

The extra loop of these homoclinic orbits does not pass close to the 
origin and they occur at parameter values far from principal homoclinicity, 
so we believe that the existence of such orbits cannot properly be deduced 
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Fig. 4.12. The  s imples t  secondary  homocl in ic  orbits. (i) b = 2.0, c = 3.8332. (ii) b = 2 . 0 ,  

c = 5.083. 

from the local analysis of the principal homoclinic orbit. In particular, it is 
probably not reasonable to think of them as subsidiary homoclinic orbits; 
we shall call homoclinic orbits such as those in Fig. 4.12 secondary homo- 
clinic orbits. These orbits bifurcate from the lowest branch of the principal 
periodic orbit so they will also play an important role in the observable 
dynamics of the system. 

We believe that for b values between 0.8 and 1.5, the bump on Fig. 
4.11(ii) gets bigger until at some critical b value it becomes infinite. At 
larger b values we get a pair of secondary homoclinic orbits and thereafter 
the bifurcation sequence looks like Fig. 4.9(iii). For b = 1.5 both secondary 
homoclinic orbits are in the region of parameter space with 6 > 1. For 
larger b values one or both of these homoclinic orbits may have 6 < 1 with 
the consequent complications. Our claim (Section 3.3.2) that each homo- 
clinic orbit only contributes one periodic orbit to the global bifurcation 
picture makes this relatively unimportant as far as that picture is con- 
cerned. 

We believe that there is an infinite sequence of secondary homoclinic 
orbits in a region of parameter space as shown in Fig. 4.13, with the 
simplest secondary homoclinic orbits (Fig. 4.12) on the inside. This sugges- 
tion will be supported by the arguments of Section 4.3. Each of these 
secondary homoclinic orbits has different global properties, so this is not 
the same phenomenon as the occurrence of subsidiary homoclinic orbits 
discussed in Section 3.2; each secondary homoclinic orbit will, of course, 
have its own subsidiary orbits if it occurs in the region 8 < 1. We have not 
established the arrangement of all the secondary homoclinic orbits within 
the region A of Fig. 4.13; the figure shows some of the possibilities likely to 
o c c u r .  
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�9 

C ) 

Fig. 4.13. The global bifurcation diagram. PD, the first period-doubling bifurcation; A, 
secondary homoclinic orbits; B, locus of the secondary homoclinic orbit shown in Fig. 4.120); 
C, locus of the secondary homoclinic orbit shown in Fig. 4.12(ii); D, subsidiary homoclinic 
orbits; E, principal homoclinic orbit. 

As we increase c at a fixed b value large enough to intersect the 
innermost curve of secondary homoclinic orbits, we first observe a se- 
quence of period-doubling bifurcations leading to the familiar chaotic 
regime. This contains intervals of parameter values where stable periodic 
orbits are observed, and others where chaotic behavior is observed (cf. most 
chaotic systems). We then reach the left-hand (small e) edge of the region 
of secondary homoclinic orbits. From this point onwards we expect some 
trajectories to escape to infinity (having arrived at the wrong side of the 
stable manifold of the origin). The effect of this sequence of homoclinic 
orbits is to remove periodic orbits from the system, eventually leaving [once 
we have crossed the innermost curve which corresponds to the homoclinic 
orbit of Fig. 4.12(i)] only the nonstable principal periodic orbit (cf. Section 
4.3). Numerical observations do not detect a sudden change in the behavior 
of the system when we reach the beginning of this sequence; trajectories 
may wander chaotically for a very long time before escaping to infinity or 
(particularly if 6 > 1 in this region) they may be attracted to various 
periodic orbits which are stable because they are approaching homoclinic- 
ity; some of these orbits may be extremely complicated and chaotic 
looking. 

The sequence of secondary homoclinic orbits on the right (larger c) 
then produces the orbits which restabilize the principal periodic orbits on 
the lowest branch. There may be stable chaotic behavior in this region also 
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(to the right of the secondary homoclinic orbits), but we have not observed 
it and we do expect many trajectories to escape to infinity. 

Arneodo et  a/. (3) were aware of the existence of some secondary orbits 
and suggested that these came from the doubly periodic orbits as described 
above. However, Fig. 4.13 shows the global bifurcation picture in a much 
more complete form than the one given by Arneodo et  al.  (3) 

Near parameter values for which the principal homoclinic orbit exists 
with 6 < 1, we know from the local analysis that there must exist many 
periodic orbits. We have, however, been unable to observe stable chaotic 
motion near the principal homoclinic orbit; many of the periodic orbits are 
nonstable and most trajectories eventually leave the region of phase space 
near the origin. Any stable chaotic behavior that exists must have a very 
small basin of attraction, and must be stable over very small parameter 
ranges. 

We believe that for large enough c (to the right of a neighborhood of 
the principal homoclinic orbit) no  periodic orbits exist and all trajectories 
escape to infinity. 

4.2.6. Further Remarks. We have drawn a distinction between the 
secondary homoclinic orbits and the subsidiary homoclinic orbits on the 
grounds that the secondary homoclinic orbits' extra loops about B do not 
pass close enough to the origin to be treated by local analysis. As we shall 
discuss in the concluding section, the results in this section and Section 4.3 
are essentially compatible with the results we would have obtained by 
treating the secondary homoclinic orbits as "extremely distant" subsidiary 
homoclinic orbits of the principal homoclinic orbit. We continue, however, 
to think this separation reasonable for reasons discussed above and ex- 
panded upon in Section 5. 

4.3. A Piecewise Linear System of R6ssler 

It is our intention, in this section, to study a one-parameter piecewise 
linear system of ordinary differential equations which has a global bifurca- 
tion picture which is almost exactly the same as that of the example studied 
in Section 4.2 with c varying and b large enough (e.g., b = 2.0). R6ssler et  

al.  (18) introduced the system, and it was later studied and described in 
Sparrow, (19) R6ssler, (2~ and Uehleke. (21) The system is very similar to 
piecewise linear systems studied independently by Arneodo e t  al .  (22) and 
the techniques used in the last-mentioned paper to prove the existence of 
homoclinic orbits of the type discussed in this paper are also applicable to 
the earlier papers. As Arneodo et  a/. (22) point out, the development of 
chaos in these systems is somewhat similar to the development of chaos in 
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many of the simpler known chaotic systems (e.g., Ref. 23), suggesting, as 
with the example from Section 4.2, that the role of homoclinicity in the 
development of numerically observed chaos deserves further study. Spar- 
row (19) did recognize that homoclinicity had a role to play in the under- 
standing of the system to be described below. However, in that paper the 
development of chaos was studied by considering a global one-dimensional 
approximate return map derived from an analysis of the behavior which 
centered on the other (i.e., the nonhomoclinic) stationary point in the 
system. It is this analysis which we now wish to describe. When homoclinic- 
ity enters the picture we shall treat it in a global and not a local way. In 
other words, we shall assume that each homoclinic bifurcation produces or 
destroys just one periodic orbit from our global picture and that we are not 
overly concerned with the local details. We only describe the system and 
derivation of the map briefly below, since full details can be found in Ref. 
19. We will then discuss the interrelationship between the approach of this 
section (4.3) and the approach of the previous section (4.2). 

4.3.1. The System. The system we study is 

= f ( z )  - x 

y~=x-y 
2 = y - z  

where f ( z )  has the form 

f ( z )  = a -  b ( z  - p ) ,  z < p 

=a+c(z -p) ,  z>lp 

Sparrow (19) used parameter values a = -0 .25 ,  p = 3/7,  b = 8.4, and c = 
8.4r with 2 < r < o0, since these were the values used by R6ssler e t a / .  (18) 
In what follows the exact values are probably not important except that we 
take a < p, b > 8, and c > 1 so that there are two nonstable stationary 
points, one in the linear system which lies above the plane z = p and one in 
the linear system which lies below z = p. 

We call the two stationary points O and B (in direct analogy with the 
example of Section 4.2); O lies in z > p and B lies in z < p. The eigenvalues 
at O are c 1 / 3 -  1 (which is real and positive) and the complex conjugate 
pair, - 1 - �89 c ~/3 + iwo, which have negative real part. 

Thus, if O has a homociinic orbit it is amenable to the analysis of this 
paper. We concentrate, however, on the other stationary point, B, which 
has one real and negative eigenvalue ( - b  1 / 3  - 1) and a complex conjugate 
pair of eigenvalues, �89 1/3 - 2 ) •  i~1, which have positive real part if 
b > 8. Figure 4.14 shows the stable and unstable manifolds of these 



686 Glendinnlng and Sparrow 

c I v D 

/ J < ' / Z  J / /  / , /  , . "  " ' ,  \ ' , "~ / ' - . ,  ~ T h e  Line y : z : p  
~ / / ' " / " " ~ " ' I  ' F 

P 

of B 

Fig. 4.14. A schematic picture of the piecewise-linear system. The system is linear above and 
below the plane z = p (which includes A CDF) and parts of the stable and unstable manifolds 
of the stationary points 0 in z > p and B in z < p are shown. 

stationary points in the half-spaces z < p and z > p in the case where 
b > 8. We will be interested in trajectories which behave as follows: 

(i) A trajectory started on z = p  in A P E F  will travel downwards  
(y  < p  and 2 = y - z  < 0). Below the plane z = p  it will move rapidly 
towards the unstable manifold of B and spiral slowly outwards,  eventually 
striking the plane z = p again somewhere near the line XV. 

(ii) It  will then move in the half-space z > p under  the influence of 
the point  O. If it has struck z = p  near the section X W  of XV, it will 
inevitably return to z = p again, somewhere close to an arc f rom X to Y ( Y 
is the point  where one branch  of O ' s  unstable manifold first strikes z = p)  
since the effect of the linear system in z > p will be to map points on X W  
onto an arc f rom X to Y. The trajectory is now on z = p  in A P E F  again 
and we can go back to (i) with the possibility of the trajectory remaining 
bounded  forever. If, however, the trajectory comes up through z = p  near 
to the section V W  of XV, that  trajectory will p robably  be lost, tending to 
infinity close to the other b ranch  of the unstable manifold of O. 

4.3.2.  A One -D imens iona l  M a p .  W e  can  ex t r ac t  a one-  
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Fig. 4.15. A p p r o x i m a t e  one-d imens iona l  re turn  m a p s  of the l ine B V  to itself for the piecewise 
l inear  sys tem b = 8.4, a = - 0 . 2 5 ,  c = 8.4r. The  m a p  is not  def ined in (*, V). (i) r = 2; (ii) 
r = 19; (iii) r , ~  27; (iv) r = 30. 
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dimensional map which models the behavior of this system if we assume 
that trajectories below z = p  are attracted instantaneously to the unstable 
manifold of B. This is a reasonable approximation when the parameter 
b = 8.4 since we then have very slow outwards spiraling on the unstable 
manifold of B [the real part of the complex eigenvalues is �89 1/3 - 2)] and 

relatively rapid movement towards this manifold (the real eigenvalue at B is 
- -  b 1/3 - 1). We then compute a first return map on a line such as BV.  B V  

lies on the unstable manifold of B and trajectories started on B V  will strike 
the plane z = p  along the line XV;  those trajectories striking z = p  along 
W V  will be lost so the map is not defined everywhere. The simplicity of our 
system means we can compute these maps with arbitrary accuracy, and 
maps calculated with the parameter values given above (a = -0 .25,  b = 
8.4, c = 8.4r) give results which model the actual behavior of the system 
very well. (J9) This modeling was not only qualitative but quantitative; the 
development of chaos in the one-dimensional maps gave good predictions 
for the parameter values at which chaos developed in the complete system. 

Maps similar to those calculated in Ref. 19 are shown in Fig. 4.15. The 
parameter r referred to in Fig. 4.15 is the one above ( c -  8.4r) and the 
parameters a and b are fixed. 

The point (*) marked on each of the diagrams of Fig. 4.15 is the point 
on B V  such that the trajectory started at (*) strikes the plane z = p exactly 
at W (which moves as r moves). On striking z = p  at W a trajectory will 
spiral into the stationary point O and not return to B V; therefore the map 
is not defined at (*). The map is also undefined for points between (*) and 
V; trajectories started at these points strike z = p along W V  and are lost to 
infinity. The map is defined, however, for points between B and (*); 
trajectories started at these points strike z = p  along X W  and return to B V  

as described above. Observant readers will notice that the map has a small 
hiccup for points close to and on the left of (*). In fact, we know there must 
be an infinite number of very small oscillations as we approach (*); these 
correspond to the large amount of spiralling which trajectories can do in 
the half-space z > p if they arrive at z = p close enough to W. 

In Figs. 4.150) and 4.15(ii) we have drawn an inner box; points within 
these boxes map onto other points within the boxes, which therefore give us 
a region in which we can expect to find bounded trajectories. The point (*) 
lies outside the boxes and does not interest us yet. At r = 2 [Fig. 4.15(i)] we 
have a stable fixed point (representing a stable periodic orbit of the system) 
and there are then successive period-doubling bifurcations as r increases 
leading to a chaotic one-dimensional map and a chaotic system at r = 19 
[Fig. 4.15(ii)]. We claim that this development is similar to the development 
of the example in Section 4.2 as the parameter c there increased from the 
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Hopf bifurcation value towards the leftmost homoclinic curve of Fig. 4.13 
(at some large enough b value). 

Reaching the leftmost homoclinic curves of Fig. 4.13 corresponds to 
reaching diagram (iii) of Fig. 4.15. Now, for the first time, the point (*) 
becomes of interest. The unstable manifold of the stationary point O will, 
in our one-dimensional approximation of the system, first strike B V at g(*). 
[Here we are writing g(-) for the maps of Fig. 4.15.] Since our map is 
chaotic we expect that as we follow successive iterates of this point gZ(,), 
g3(.), etc., we will at some point end up with g " ( * ) ~  (*). For an appropri- 
ate choice of parameters we will have g" (* )=  (*) for some n, and this 
condition will be equivalent to the condition for the stationary point O to 
have a homoclinic orbit. As we move on to Fig. 4.15(iv) we have more and 
more of these homoclinic parameter values, and it is clear that as we pass 
through each such value we lose a periodic orbit from our global picture. 
Finally we reach the position shown in Fig. 4.16(i) where we have a 
homoclinic orbit of "period two" [this corresponds to the homoclinic orbit 
of Fig. 4.120) ] and for slightly larger parameter values we have the 
situation shown in Fig. 4.16(ii) in which it is clear that there can be no 
periodic orbits in our map except for the fixed point (which represents the 
principal periodic orbit of Section 4.2). In the whole parameter range 
represented by Figs. 4.160) to 4.16(ii) we expect most trajectories to be 
unbounded; we have lost the turning point of our map (which is the part 
that gives stability to the periodic orbits) and the chaotic nature of the flow 
will ensure that most trajectories eventually fall into the "escape region." 

The last paragraph does, of course, ignore some complicated consider- 
ations which we must now face. If we concentrate on the point (*) we must 
be prepared to consider the complicated nature of the map to the left of 
(*); that is, the infinite number of very small oscillations there. If we were 
to analyze exactly what occurred as we passed through homoclinic parame- 
ter values we would need to know the shape of these oscillations (which 
would depend on 6, the ratio of the real parts of the eigenvalues at O), 
and the analysis would turn into a one-dimensional version of the local 
analysis of each homoclinic orbit. In the case of our example we would 
have 6 < 1 for all the homoclinic orbits which occur (which does differ 
from the example of Section 4.2) and would expect to find an infinite series 
of saddle-node bifurcations on either side of the homoclinic values, together 
with other complications deducible from the local analysis and all due to 
the small oscillations near (*). We claim, however, that from the point of 
view of our global picture it makes perfectly good sense to ignore the small 
oscillations and note that as we move the parameter through some reason- 
ably small interval about the homoclinic values the global effect is just the 
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B 

Fig. 4.16. The approximate one-dimensional map, as r increases beyond 30, for the interval 
[B, *]. (i) There is a homoclinic orbit of "period 2" [cf. Fig. 4.120) ]. (ii) The fixed point is the 
only periodic point in the system. (iii) There is another homoclinic orbit of "period 2" [cf. Fig. 
4.12(ii)]. (iv) Principal homoclinicity is reached. 
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removal of the one periodic orbit. In this case, of course, the value of 6 and 
the shape of the oscillations is irrelevant. Before discussing this a little 
further let us see what happens if we continue to develop the global map 
beyond the situation shown in Fig. 4.16(it). 

In Fig. 4.16(ii) we have reached the situation where we may have 
homoclinic orbits occurring on only the right-hand piece of our discon- 
nected one-dimensional map. The first to occur will be another "period 
two" homoclinic orbit as shown in Fig. 4.16(iii), and this corresponds to 
Fig. 4.12(ii) of Section 4.2. At this point homoclinic orbits have started 
adding periodic orbits to our global picture, and if we continue in this 
direction this corresponds to crossing over the right-hand side of the looped 
homoclinic curves of Fig. 4.13 until we eventually arrive at Fig. 4.16(iv). 
Figure 4.16(iv) is, of course, the map we would want to consider if we were 
to do a one-dimensional local analysis of the last homoclinicity to occur 
(the principal homoclinicity) and sufficiently beyond the parameter value 
for Fig. 4.16(iv) we expect there to be no bounded trajectories at all; the 
last homoclinicity has swallowed up the orbit which was represented by the 
fixed point of the one-dimensional map (the principal periodic orbit, just as 
in Section 4.2) and all trajectories escape to infinity. 

4.3.3. Further Remarks.  We have chosen a piecewise linear exam- 
ple for this section because of the ease of analysis. We do expect, however, 
that it would have been almost as easy to extract (numerically) a one- 
dimensional approximation for the example of Section 4.2, and that the 
map so obtained would have behaved in basically the same way as that 
studied here. The correspondence between the global results of the two 
sections certainly encourages this expectation. We have, therefore, a differ- 
ent method of looking at the example of Section 4.2, and must examine the 
implications of this approach. 

It would be possible to claim that the big, global-chaos-generating 
hump in our one-dimensional map is just another of the infinite number of 
oscillations that spread out from (*), the "homoclinic point." This would 
basically be equivalent to the claim that the local analysis of the principal 
homoclinicity predicts numerically observable chaos at parameter values 
far from homoclinicity. In line with our remarks throughout this paper, we 
do not really support such a claim. Notice, in particular, how the behavior 
of the flow near the stationary point B (which gets no mention in the 
homoelinic analysis) was crucial to our being able to extract a global 
approximate one-dimensional map in the first place. In addition, we 
managed to explain the appearance of chaos (with increasing parameter) 
almost entirely without reference to the stationary point O. We could, if we 
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liked, refer to our approach in this section (4.3) as a B-centered approach, 
while the approach in Section 4.2 was O-centered. For further discussion 
the reader is referred to the next, and final, section. 

5. CONCLUSION AND OTHER SYSTEMS 

In this paper we have derived some new results from the local analysis 
of the behavior near a homoclinic orbit to a stationary point of saddle- 
focus type and shown how these results, particularly insofar as they relate 
to the simpler periodic orbits in the system and in conjunction with 
numerical methods for following these periodic orbits with changing pa- 
rameter, can be used to piece together global bifurcation pictures. We hope 
this approach will be useful in the study of many systems. 

From the examples we have considered, and from other literature (see 
below), it is clear that we must expect the observable effects of the existence 
of a homoclinic orbit in a system to vary quite a lot, though certain general 
patterns can be expected fairly frequently. In the examples of Sections 4.2 
and 4.3 we found that virtually all the interesting observable behavior (in 
particular, stable chaotic motions) was associated with the lowest branch of 
the bifurcation curve of the principal periodic orbit, and occurred at 
parameter values far from principal homoclinicity. Perhaps remarkably, 
then, it seems that all our results for the system of Section 4.2 are 
compatible with predictions from a local analysis of the principal periodic 
orbit. The homoclinic orbits we called secondary (attempting to separate 
local and global pictures) could equally well have been considered subsid- 
iary (apart from the fact that we could not convince ourselves that the 
orbits in Fig. 4.12 passed close to the origin twice) with the same result. 
Nonetheless, the fact that we could analyze a very similar system in a 
completely different way in Section 4.3, suggests that these features are the 
result of a global interaction between the stationary points, and are not just 
a necessary consequence of homoclinicity in the system. 

Interestingly, global bifurcation pictures similar to that shown in Fig. 
4.13 have been discovered in other systems. Knobloch and Weiss (24) 
computed a bifurcation diagram for a five-dimensional model of magneto- 
convection which looks remarkably like that of Fig. 4.13 and which 
contains homoclinic and heteroclinic orbits (the system has a symmetry). 
A. Bernoff (25) has followed several periodic orbits in a related four- 
dimensional system and confirms that they behave in a similar way to the 
analogous orbits in our examples. In their paper, Knobloch and Weiss (24) 
refer to "gaps," "bubbles," and the propensity of bubbles to "burst." 
Bifurcation bubbles are the sequences of bifurcations occurring for low b 
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values in the example of Section 4.2; in other words, when a stable periodic 
orbit period-doubles (with possibly a finite number of further period- 
doublings) and then that sequence of bifurcations reverses itself eventually 
restabilizing the original orbit, that whole sequence of bifurcations is a 
bubble. If there is an infinite sequence of period-doublings leading to chaos 
within the bubble, then Knobloch and Weiss say the bubble has burst. As b 
is increased (Section 4.2), secondary homoclinic orbits start to occur in the 
sequence of bifurcations and a parameter range appears in the middle of 
the bubble where no stable behavior (chaotic or otherwise) is observed; this 
parameter range is a gap, and corresponds to the section within the locus of 
secondary homoclinic orbits in Fig. 4.13 where we claim that the nonstable 
principal periodic window is the only periodic orbit in the system. See also 
Ref. 26. 

Of perhaps even greater interest is the bifurcation diagram in Ref. 27, 
computed for a partial differential equation modeling two-dimensional 
thermosolutal convection, which appears to show, quite clearly, bifurca- 
tions on the two lowest branches of a bifurcation curve for some principal 
periodic orbit approaching a 6 < 1 homoclinicity. Regrettably, it is not yet 
possible to follow periodic orbits in the solution to partial differential 
equations in the same way as is possible for o.d.e.'s, so these remarks 
remain speculative. Note, however that this bifurcation picture is different 
from any that we have observed numerically, adding weight to our claim 
that homoclinicities will have different effects on different sYstems. 

Returning to three-dimensional systems with two stationary points, 
variations are possible here also. Gaspard and Nicolis (28) and Gaspard, 
Kapral, and Nicolis (29~ have looked at one of R6ssler's systems (23~ with a 
view to determining the effect of homoclinicities in that system. The 
parameter range they examine does not seem to include values at which 
principal homoclinicity (in the sense of this paper) occurs, though the 
bifurcations they observe are compatible with the left side of a figure like 
Fig. 4.13 up to the point where secondary homoclinic orbits start to occur 
and attracting behavior is no longer observed. Our analysis suggests that 
the selection of one particular secondary homoclinic orbit as causing the 
loss of attractivity is probably difficult. It should be noted that the 
occurrence of infinitely many secondary homoclinic orbits in a small 
parameter range is a quite different phenomenon from the occurrence of 
infinitely many subsidiary homoclinic orbits which would be associated 
with each of the secondary homoclinic orbits if 6 < 1 ; the former is a global 
phenomenon, the latter a local one. Gaspard and Nicolis (zS) also observe 
homoelinic trajectories to the other stationary point (B in our examples) 
which appear to be associated with the change-over from R6ssler's "spiral- 
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type" to "screw-type" chaos (Ref. 23; see also Ref. 22). In a very recent 
paper (29) they investigate the bifurcations near such homoclinicities in some 
detail. Notice, though, that it is fairly easy to see that if a piecewise linear 
system like that studied in Section 4.3 were adjusted so that there were 
homoclinic orbits to the point B (see Fig. 4.14) as well as to O, then the 
existence of homoclinic orbits to B would tend to change the nature of the 
chaotic attractor (by ensuring that trajectories continually passed very close 
to B) rather than creating or destroying attractivity. It should be noted that 
these remarks have a global rather than local character and the 8 values at 
the homoclinic orbits to B would seem likely to be relatively unimportant. 
Further information on the possibilities of piecewise linear systems, though 
with a slightly different emphasis from ours here, can be found in Ref. 21. 

Our other example, the Lorenz equations (Section 4.1), illustrated the 
fact that the homoclinicities may occur in systems where they are relatively 
unimportant for the understanding of the majority of the observed behav- 
ior. In such cases it may make sense, as we have suggested, to think of the 
principal homoclinicity (and any complications associated with it) as pro- 
ducing a single periodic orbit. 

In conclusion, then, homoclinic orbits may be considered in both local 
and global terms. Often the local considerations, such as 8 < 1 or 8 > 1, 
and the results of Sil'nikov consequent upon them, do not tell us much 
about the behavior likely to be observed in the system; we have argued that 
this is particularly likely to be the case if the quantity ~rX2/~, calculated 
from the eigenvalues at the relevant stationary point, is large. Global 
considerations are likely to be much more important; thus, for instance, we 
can speak of observable chaos occurring close to sequences of secondary 
homoclinic orbits (which each have, globally, quite different properties), 
without particular reference to whether 6 < 1 or 8 > 1 for each of these 
orbits (ef. Sections 4.2 and 4.3). It is possible that certain global bifurcation 
pictures, in particular that shown in Fig. 4.13, will occur frequently in 
systems with homoclinicities, but we can expect global variations on this 
figure (such as must occur with R6ssler's sytem) which cannot be predicted 
by the local analysis of any one homoclinic orbit; consequently, we refer to 
Fig. 4.13 as a global picture, despite the fact that in its essentials it appears 
to be compatible with local predictions from the analysis of the principal 
homoclinic orbit. 

Further studies may illuminate other more general global bifurcation 
structures; for the moment, and particularly in more complicated or 
higher-dimensional systems, the existence of a homoclinic orbit of the type 
described here should not be taken to lead immediately to any global 
conclusions, but should be carefully investigated, probably by following 
periodic orbits of the system. 
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